A dissipative algorithm for wave-like equations in the characteristic formulation
نویسنده
چکیده
We present a dissipative algorithm for solving nonlinear wave-like equations when the initial data is specified on characteristic surfaces. The dissipative properties built in this algorithm make it particularly useful when studying the highly nonlinear regime where previous methods have failed to give a stable evolution in three dimensions. The algorithm presented in this work is directly applicable to hyperbolic systems proper of Electromagnetism, YangMills and General Relativity theories. We carry out an analysis of the stability of the algorithm and test its properties with linear waves propagating on a Minkowski background and the scattering off a Scwharszchild black hole in General Relativity.
منابع مشابه
Rayleigh Wave in an Initially Stressed Transversely Isotropic Dissipative Half-Space
The governing equations of a transversely isotropic dissipative medium are solved analytically to obtain the surface wave solutions. The appropriate solutions satisfy the required boundary conditions at the stress-free surface to obtain the frequency equation of Rayleigh wave. The numerical values of the non-dimensional speed of Rayleigh wave speed are computed for different values of frequency...
متن کاملAn efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملExact solutions for wave-like equations by differential transform method
Differential transform method has been applied to solve many functional equations so far. In this article, we have used this method to solve wave-like equations. Differential transform method is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Some examples are prepared to show theefficiency and simplicity of th...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کامل